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Introduction
In glass research and technology, it is often neces-
sary to reduce the costs of raw materials, to improve 
specific properties, or to design a glass composition 
for new applications. To meet these needs, the use 
of personal experience and published scientific 
literature is advantageous. In recent years, the crea-
tion of large glass property databases has facilitated 
systematic glass property modelling and property 
measurement evaluation. It is no longer required to 
search worldwide for numerous individual publica-
tions regarding specific properties. The commercially 
available systems SciGlass(1) and Interglad(2) combine 
hundreds of thousands of experimental findings from 
the majority of glass research papers from over a cen-
tury, including the associated references. In addition, 
SciGlass gives details about measurement methods. 
Furthermore, predictions are possible in SciGlass 
through models published previously, and Interglad 
includes a predictive linear regression feature.

Despite the recent progress, there are several 
shortcomings in these commercial tools:
(1) Numerous experimental data from various inves-

tigators differ significantly, even within simple 
glass systems and for well investigated properties 
(see Figure 8 in the discussion of future work).

(2) Many predictive glass property models exist 
in the literature, and it is sometimes difficult to 
decide which model is the most appropriate.

(3) Industrial glasses have complex compositions, 
and it is not always possible to predict properties 
through commonly used linear property–compo-
sition relations.

(4) Some of the published models are based on sci-
entific principles or derived assumptions about 
the details of chemical bonding within a glass. 
Therefore, experiments need to be interpreted 
(that lead to those scientific principles or to those 
derived assumptions about the details of chemi-
cal bonding within a glass) before some models 
can be established. This can be a source of error 
based on the accuracy of this interpretation.

(5) Some models consider the experimental find-
ings of a few or only one single investigator, i.e. 
systematic errors of a few investigators easily can 
lead to incorrect conclusions. Systematic errors 
of whole data series are known in glass science 
as described below in Table 2, and referred to at 
the end of Step 7 of the statistical analysis (outlier 
analysis, data leverage).

(6) The prediction errors for models based on one 
investigator reflect the measurement precision 
in her/his laboratory, but it is not possible to 
conclude how such prediction errors will relate 
to those based on data from other laboratories.

In this work, an attempt is made to overcome these 
problems above for practical application in glass 
technology. The goal is a method that features quan-
titative prediction accuracy and simplicity. Therefore, 
it is not a requirement to have an expert knowledge 
of all details of the nature of glass, the published 
modelling techniques, or advanced mathematical 
procedures. It is also not necessary to acquire expen-
sive software (besides common spreadsheet software 
like Excel) or a high performance computer. However, 
it is strongly advised to rely on experience about the 
subject matter, and, if possible, on dedicated software 
that can perform some of the procedures described 
in this tutorial automatically.
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High accuracy can be obtained by using (1) a 
large number of experimental findings from the 
commercial SciGlass and Interglad databases and (2) 
well established statistical analysis techniques. The 
statistical approach outlined here is not original in 
general, as numerous publications can be consulted 
about the topic,(3–9) written over two centuries. In the 
current work, the statistical method largely follows 
general techniques that are applied successfully, for 
example by Harold S Haller & Company(10) in busi-
ness consulting, by Bechtel Hanford Inc. for nuclear 
waste vitrification,(11) and for modelling of solar con-
trol glasses.(12) Statistical analysis is also firmly estab-
lished in numerous areas in quality control, economy, 
biology, sociology, politics, etc., to mention just a few 
applications. The range of applications underlines the 
basic character of statistical analysis that has been 
ignored for too long in glass science.

Statistical analysis in glass science and 
technology

Ernst Abbe, Otto Schott, and A. Winkelmann initiated 
methodical studies of glass properties in the 19th 
century, creating the basis of modern glass science 
in Jena, Germany. They considerably improved the 
use of glasses for special applications, e.g. for optics, 
thermometers, and as a thermal shock resistant mate-
rial. Winkelmann & Schott published the first model 
that allowed the prediction of glass properties based 
on the chemical composition, using the additivity 
principle,(13,14) i.e. multiple regression using linear 
functions. This principle is based on the assumption 
that the relation between the glass composition and a 
specific property is linearly related for all component 
concentrations. In this case all of the component 
influences can be summed as follows

Property i i= +
=
Âb b0

1
C

i

n
 (1)

where β0 in Equation (1) is the model intercept, n is the 
total number of significant glass components exclud-
ing the main component (usually silica), the i values 
are the individual numbers of the significant glass 
components, the βi values are the component-specific 
coefficients, and the Ci values are the concentrations 
of the glass components (also called model factors or 
independent variables).

The additivity principle allows for very precise 
and accurate predictions within limited concentration 
ranges,(12,13,15–24) that cannot be reached by structural,(25–

29) thermodynamic,(30–53) or molecular dynamic(54–56) 
modelling approaches. Because of the simplicity of 
the technique, the ease of interpretation, and good 
prediction results within specified limits, Equation 
(1) is most widely used for glass property modelling. 
The additivity principle cannot however be applied 

for modelling glass properties over wide concentration 
ranges because of component interactions.

The glass models summarised above are not dif-
ferent in principle. Procedures expressed through 
equations based on specific variables are always 
established for property–composition relationships. 
The variables and equations vary, however, and 
sometimes the variables are derived beforehand 
from basic principles (“ab initio”) which are in turn 
based on other (basic) observations such as the atomic 
mass, bonding distance, bond strength, electron af-
finity, stochiometry, or elemental charge. Therefore, 
all models are empirical by nature, while in ab initio 
models the empirical character is hidden within 
fundamental laws about property relations. Often, 
property modelling derived from other observed 
properties is less reliable (but scientifically more 
interesting) than direct modelling of observed prop-
erties. Because the nature of glass is not sufficiently 
well understood, few models exist where different 
kinds of properties can be mutually derived from 
each other, e.g. thermodynamic and rheological 
properties, even though rheological properties can 
be determined from thermodynamic properties. 
The final goal is to understand the meaning of all the 
variables and relationships in glass models in detail. 
In the current work, it is suggested that the problem 
should be approached stepwise, i.e. an empirical 
start is made using simple linear and polynomial 
relations between the glass composition and observed 
properties. Once all relevant phenomena have been 
recognised and organised by means of basic statistical 
analysis, the step from observation to interpretation 
can be performed with much higher confidence than 
without statistical analysis.

In the following paragraphs, simple statistical 
analysis will be developed for glass property model-
ling as the most basic tool of data organisation and 
interpretation.

Single linear regression using linear functions

Property=β0+β1C (2)

The terms β0 and β1 in Equation (2) are regression 
coefficients and C is the regression factor or independent 
variable (glass component concentration). Equation (2) 
can be used for glass property modelling in binary 
systems within narrow concentration limits.

Single linear regression using polynomial functions

Property=β0+β1C+β2C2+β3C3+… (3)

Equation (3) can be used for modelling in binary glass 
systems within wide concentration ranges as long as 
sufficient data exist and sharp property extrema(57,58) 
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caused by significant crystallisation, phase separa-
tion, or other effects do not occur.

Even though nonlinear polynomial functions are 
used in Equations (3), (6), and (7), those equations are 
still linear in the coefficients and they are solved using 
linear regression. All coefficients of the higher order 
terms in Equations (3), (6), and (7) are determined 
in exactly the same way (through Equation (12), see 
below) as the first order additive terms in Equations 
(1), (2), (4), and (5). An example for non linear regres-
sion is described below.

Multiple linear regression using linear functions

Property=β0+β1C1+β2C2+β3C3+… (4)

Equation (4) is identical to Equation (1). It may be 
applied for glass property modelling in multicom-
ponent systems within narrow concentration ranges 
under exclusion of sharp property extrema such as 
caused by crystallisation, phase separation, and other 
effects. Component interactions are not considered 
in this model form.

It needs to be mentioned that the intercept in Equa-
tions (1) to (4) may be eliminated if the main glass 
component silica (SiO2) is included in the equation. 
For example, in the binary system SiO2–Na2O Equa-
tion (2) may be modified as follows

Property=β0+β1C(Na2O)=β2C(SiO2)+β3C(Na2O)+… (5) 

[Author: please check this equation, not sure about 
the second "="]
The approach using an intercept is called “slack 
variable” (SV) technique and the approach without 
results in a “canonical” or “Scheffé” type model.(59) 
Both approaches are very similar statistically; how-
ever, the canonical form of the model is expected to 
produce slightly more accurate predictions if the 
main component concentration varies significantly or 
even approaches zero. The slack variable technique 
will be the main focus of this study because it can be 
straightforwardly applied to common binary systems 
such as SiO2–Na2O using squared and cubic terms for 
Na2O that are not allowed in the canonical technique, 
as discussed in the following section. Most com-
mercial glasses contain silica as the main component 
(about 40 to 85 mol%) that can be excluded, and slack 
variable modelling results can be interpreted easily: 
a specific coefficient shows the property variation 
caused by the exchange of 1% of the considered com-
ponent for silica. The multiple regression coefficients 
obtained with the slack variable (SV) technique are 
similar to the values commonly depicted in “spider 
graphs”.(16,17) Except for the constant term, β0, the SV 
coefficients must be interpreted as resulting from 
interactions with the excluded main component silica 
(Ref. 6, p15–18 and 333–343); while in a canonical 

model the coefficients show the extrapolated proper-
ties of the related pure components in the (theoretical) 
vitreous state. All equations described in this work 
can be applied for the SV and canonical modelling 
approaches as described below.

Multiple linear regression using polynomial 
functions

Property=β0+β1C1+β2C2+β3C3+…+β4C1
2+β5C2

2+β6C3
2+…

+β7C1C2+β8C2C3+…+β9C1
3+…β10C1

2C2+β11C1
2C3+… (6)

Equation (6) is analogous to Equations (2) to (5). The 
exact form of Equation (6) for the SV regression model 
using polynomial functions of the second order 
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where β0 is the intercept, βi are the single component 
coefficients and the coefficients of squared influ-
ences, and βik are the coefficients of two component 
interactions. The variable n in Equation (7) is the total 
number of the significant glass components excluding 
silica; j and k are the indices of the significant glass 
components, and the C-values are the component con-
centrations (excluding silica) in mol or mass fraction or 
percent (preferably mol fraction or percent). Equation 
(7) or its canonical variation may be used for glass 
property modelling in multicomponent systems over 
wide concentration ranges.(11,60–66) Sudden property 
changes, such as changes caused by crystallisation 
and/or phase separation, are difficult to describe with 
multiple regression using polynomial functions;(58) 
therefore, advanced nonlinear functions should be 
applied in these cases. For example, only within very 
limited concentration ranges can glass liquidus tem-
peratures be modelled with linear regression using 
polynomial functions,(22,23,67–69) as long as the primary 
crystal phase is constant or has little influence.

If all high order terms are examined in a second 
order canonical model, then only cross product terms 
(CiCk), and no squared terms (Ci

2), are allowed to 
avoid over-parameterisation caused by the mixture 
constraint C1+C2+C3+…+Cn=100%. However, if only 
some of the second order terms are populated, then 
both cross product and squared terms can appear in 
a “reduced” model.(70)

Multiple nonlinear regression using advanced 
functions

It is possible to introduce advanced functions into 
Equation (7), or the structure of the equation may be 
changed completely. Chemical equilibria between spe-
cies in glass may be considered.(36,43,44,71) The exact cal-
culation of chemical equilibria based on equilibrium 
constants and total concentrations requires the solu-
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tion of high order polynomials, e.g. a second order 
polynomial for a two component mixture including 
one interaction,(64) or a fifth order polynomial for a 
three component mixture including all three pos-
sible two component interactions. Multicomponent 
mixtures can be calculated numerically using a high 
performance workstation.

A widely applied nonlinear approach is neural 
network regression:(72) logistic activation functions 
such as ex/(1+ex) or tanh(x) are used as “neurons” 
that make graduated yes/no “decisions” according 
to the input signal. Several neurons are connected 
following specified rules, partially comparable to 
neural networks in biology. The connections between 
the neurons are weighted, i.e. the signal is amplified 
or reduced. The “weights” are the fitting coefficients 
that are optimised using neural network regression. 
Dreyfus et al(58) demonstrate the application of neural 
network regression for glass property modelling. 
They show that neural network regression is ad-
vantageous compared to multiple regression using 
polynomial functions if the glass property does not 
change gradually with the chemical composition, but 
sharp property extrema do occur such as liquidus 
surfaces. Polynomial functions do not fit the sharp 
extrema well that may appear in glasses because of 
crystallisation or phase separation.

For building a neural network, component inter-
actions have to be assumed and the total number of 
adjustable weights in neural networks regression 
needs to be always larger than two times the number 
of significant glass components. Therefore, neural 
network regression requires a very high number of 
data points within an experimental region where 
interactions can be investigated. Typically multiple 
training sets are used to “teach” the neural network 
prior to application to prediction. Each training set 
will require at least as many data points as adjustable 
weights used by the network to predict response.

Advanced procedures for obtaining optimal 
regression fits

During regression analysis, often the “ordinary 
least squares” (OLS) technique is applied to derive 
coefficients for each factor, this technique minimises 
the sum of squares of the differences between the 
observed and calculated glass properties (unexplained 
errors, residuals). It is assumed that all unexplained 
errors are normally distributed with a mean of zero 
and with no mutual correlation of errors. Significant 
outliers that influence the result should not exist. If 
those conditions do not apply, then advanced pro-
cedures for obtaining optimal regression fits can be 
used, e.g. robust regression.(73,74)

For glass property modelling, it is commonly not 
required to evaluate further fitting methods besides 

OLS. In addition, the leverage analysis described 
below in the section “Step 7: Outlier analysis, data 
leverage” allows the detection and handling of out-
liers that influence the result.

Limits of regression analysis for glass property 
prediction

In principle, regression analysis can be applied to 
glass property data so long as a systematic relation 
exists between the experimental conditions such as 
concentrations and the resulting properties. How-
ever, even though regression analysis can be used 
in almost all cases, it may be used incorrectly. The 
most important issue is the possibility of sharp ex-
trema in glass properties. Besides crystallisation and 
phase separation effects, sharp extrema may occur in 
glasses with a network former content higher than 
85 to 90 mol%. For example, the Littleton softening 
point of 100% pure silica glass may be estimated 
as 1666±50°C from 54 datapoints in SciGlass.(1) If as 
little as 0·06 mol% sodium oxide is introduced, then 
the Littleton softening point decreases dramatically 
to 1280°C according to Leko.(57) In addition to high 
silica glasses, sharp property extrema may also be 
expected for glasses with high concentrations of B2O3 
(based on modelling studies of the author; see also 
publications by Appen and Gan Fuxi), P2O5, and GeO2 
or if extreme compositions have to be quenched fast 
to prevent crystallisation (e.g. 50 mol% Na2O plus 50 
mol% SiO2). Sharp property extrema also appear to 
exist in alkali aluminosilicate glasses with high Al2O3 
concentrations,(75,76) especially at low temperatures if 
the molar ratio Al/Na is approximately 1 to 1·2.

If sharp property extrema occur that cannot be 
described through the inverse of concentrations, then 
advanced regression techniques must be applied. 
Equation (7) must be modified substantially, or the 
model application range must be narrowed.(22,23,67–69)

Many property data in glass related scientific 
publications were not obtained using optimal experi-
mental designs, and most papers were not published 
in mutual cooperation. This fact leads to sometimes 
strong correlations among the model variables (see 
below, section “Step 4: Correlation analysis”), i.e. vari-
ables partly depend on each other. Strong correlations 
can be excluded through the procedure described 
below, but even weaker correlations always need 
to be considered during interpretation of the model 
results (see below).

For models based on simple assumptions, 
advanced interpretations are hardly possible. For 
example, it is completely out of the question to 
derive atomic radii, chemical equilibrium constants, 
or properties of pure silica from polynomial models 
based on a few soda–lime–silica glasses. Model appli-
cation limits must be followed as described below in 
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the section “Step 9: Model application”. Sometimes, 
interesting interpretations can be derived from mul-
tiple regression models, for example about the mixed 
alkali effect and the influence of batch materials on 
the glass viscosity.(77) Advanced regression models 
may allow further interpretation.

Selection of the appropriate regression technique

In general, regression analysis should be used accord-
ing to the available data. Within narrow concentration 
limits, the linear additivity approach is most appro-
priate whereas wider concentration limits require 
polynomial functions. If property extrema appear 
(e.g. through crystallisation, phase separation, or in 
glasses with a network former content higher than 
90 mol%) that cannot be described via the inverse of 
concentrations, then advanced regression techniques 
should be applied. The transition between the re-
gression approaches is gradual. Most important for 
deciding which technique should be used is the study 
of the linear correlation matrix (see below, Step 4: Cor-
relation analysis) of the available concentration data 
as well as the analysis of binary, ternary, and other 
related systems for evaluating the crystallisation and 
phase separation tendency, the property extrema, and 
general property trends.(78) In addition, all the mod-
elling techniques not based on regression analysis 
that are summarised in the introduction should be 
evaluated according to scientific experience.

Regarding commercial silicate and borosilicate 
glasses, it is recommended in this paper, for practi-
cal reasons, to initially apply the additive multiple 
regression technique according to Equation (1) or to 
introduce selected higher order terms according to 
Equation (7). It will be explained below, beginning 
with the section “Step 3: Selection of the model type; 
establishment of all possible variables”, how the 
higher order terms are selected.

Analysis procedure using common 
spreadsheet software

Step 1: Selection of the source data
The glass property of interest must be defined. 
According to general previous experience a glass 
composition region should be selected. The compo-
sitional region does not need to be very specific at 
first. It is helpful to extract all available values from 
the databases SciGlass(1) and Interglad,(2) and other 
data sources. If the desired property was never or 
only seldom investigated in the compositional area 
of interest, then new experiments should be designed 
and performed.

The uniformity of the selected source data (the 
frequency of outstanding or special glass composi-
tions within the source data) can be evaluated with 

the leverage analysis described below (h-value). In 
many cases, outstanding glass compositions can 
be recognised empirically by sight without further 
calculations. If possible, outstanding glass composi-
tions should be excluded from the model, or it should 
be verified that the reported properties are correct 
through repeated experiments.

All concentration values must be converted to 
either mol%, wt%, or concentration ratios, where 
mol% may be preferred, especially over relatively 
wide concentration ranges. Models based on mol% 
can be interpreted more easily, for example regarding 
the mixed alkali effect.(77)

Step 2: Calculation of property fixpoints and error 
normalisation

For obtaining optimal results, it is beneficial to stay as 
close to the original data as possible. For example, it 
is better to fit original viscosity data than the derived 
constants of the Vogel–Fulcher–Tammann equation, 
as demonstrated by Fluegel and co-workers.(20,77) 
Furthermore, properties should be preferred that 
require as limited a number of measurements as 
possible to reduce error propagation. For instance, 
glass corrosion rates may be expressed in mm/day, 
which requires measurement of only the corrosion 
layer thickness and time. Glass corrosion rates may 
also be expressed in g/m2day, where in addition to the 
corrosion layer thickness and time, the glass density 
also has to be determined. Three measurements are 
likely to contribute more error to the desired property 
than two measurements.

A property fixpoint must be selected for all glasses 
that need to be analysed. If possible, not only the 
directly given data may be considered, but also safe 
interpolations should be taken into account; e.g. if a 
property is known at 800°C, 900°C, and 1100°C, it is 
in many cases possible to estimate for 1000°C.

For selecting an appropriate scale for the property 
fixpoint, it is required initially to estimate the overall 
error distribution. For example, it can be assumed that 
all density measurements expressed in g/cm3 have a 
similar error, independent from the absolute value; 
i.e. a glass density of 2·5 g/cm3 can be measured with 
approximately the same precision as a glass density 
of 5 g/cm3. This is not the case for all properties. For 
example, a glass viscosity measurement at 100 Poise 
is related to a much lower absolute error than a 
viscosity measurement at 1013 Poise. However, the 
relative errors of all viscosity measurements are closer 
to a constant, i.e. a constant percentage of the absolute 
value. Therefore, viscosities are commonly expressed 
on a logarithmic scale, also called data transformation, 
which normalises relative errors to absolute errors. In 
Figure 1 the influence of logarithmic transformation 
on the observed property is demonstrated.
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In glass technology, it is recommended either to 
model the desired glass properties directly without 
data transformation or to determine the logarithm 
(natural or decadic) of the property.

Figure 2 illustrates the systematic approach con-
cerning instances when logarithmic transformation 
for error normalisation should be considered; after 
modelling a plot of the observed property values 
versus the differences of observed and calculated 
property values (residuals) shows increasing residual 
variance with increasing property value. In other 
words if large observed property values appear ap-
parently as outliers as seen in Figure 2 logarithmic 
transformation for error normalisation is advised.

Besides the logarithmic approach, further error 
normalisation techniques are not common for glass 
property modelling. In a few cases reciprocal nor-
malisation is possible.

Step 3: Selection of the model type; establishment 
of all possible variables

It is proposed to select the model type from Equa-
tion (1) for narrow concentration ranges if only few 

experimental data are available, or Equation (7) 
otherwise. In glass technology, it is seldom required 
to apply more advanced functions.

For facilitating practical application, a statistical 
analysis example will be demonstrated below. The ex-
ample is entirely artificial. Ten experiments, produced 
in two laboratories, will be analysed with Equation 
(1) within a five component glass system. Table 1 
gives the concentrations of the five components A, B, 
C, D, and E, the related property, and the laboratory 
designation. It may be known to the statistical analyst 
that in Laboratory 1 a new measurement method was 
attempted that is assumed to be as sensitive to glass 
composition changes as the well established method 
used in Laboratory 2, but also that is assumed to not 
give the correct absolute property value.

If component interactions need be analysed, sev-
eral columns need to be added to Table 1 that contain 
the concentration products of interest, such as B.C, 
B.D, and B.E as well as squared terms, e.g. B2. In this 
example, nonlinear terms will not be considered.

If the glass compositions to be analysed contain 
elements in various oxidation states, every oxidation 
state should be introduced as a separate variable. Often 
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however, the exact ratios of the oxidation states of an 
element in glass are unknown. Then, it is only pos-
sible to consider the sum of all oxidation states as one 
variable. For example, in most cases, the exact ratio of 
Fe(III)/Fe(II) in glass is not measured, and Fe(III) plus 
Fe (II) must be taken as a single variable (considering 
two Fe ions in Fe2O3 and one Fe ion in FeO).

If glass component interactions are well known 
from the literature, e.g. mixed alkali effects or boron 
oxide anomalies, it should be confirmed that cor-
responding interaction variables are established. Ex-
amples of this are the concentration products Na2O.
K2O and Na2O.B2O3. All possible interaction variables 
also may be added, in case some of them turn out to 
have a significant influence. (Variable deselection will 
be described later based on correlation analysis and 
factor significance.)

If reasonable, further variables could be created, 
such as the inverse of concentrations to account for 
extreme end term properties, concentration ratios, 
etc, Ref. 6, p 286. It is not beneficial in many cases 
for common glasses with C(SiO2)=40 to 85 mol% to 
consider the mentioned unusual variables because 
most of them can be reduced to linear influences 
of the glass components or component products 
within the concentration ranges studied. Unusual 
or complicated variables should be used only if they 
reduce the number of variables significantly, improve 
the model fit, or if there are other reasons to evaluate 
their impacts.

In cases where various data series are combined, 
as seen in the example given in Table 1, (Labora-
tories A and B), it is possible that so-called “block 
effects” occur. For example, it might happen that 
experimental results produced in one laboratory 
(or study) are systematically different from those 
produced in another laboratory (or study). This 
could be caused by a different calibration procedure 
or by different expertise. It also might be possible 
that a newly introduced measurement technique 
results in systematically different findings than 
previously established techniques. In the begin-
ning of the statistical analysis procedure, it is best 
to assume that block effects might be present in all 
cases; even so, it could turn out later that most of 

them do not exist in fact. This means the creation of 
“categorical” or “dummy” variables(3,4,7) in Equations 
(1) or (7). In glass property modelling, block effects 
should only be introduced into the calculation with 
the forward selection approach (see below in section 
“Step 6: Calculation of the model standard error, the 
coefficient errors and significance”). All block effects 
must be excluded from the model initially and only 
considered if significant and reasonable.

Property observed=Equation (7)+β(offset) (8)

Property observed=Equation (7) 
 +Property observed×β(trend) 
  (9)

As a result, it would be required to add further 
columns to the regression dataset in Table 1, accord-
ing to the number of data series examined. Following 
Equation (8), these columns would contain the value 
of “1” for each experiment within the series, and the 
value of “0” for each experiment of other series (see 
Table 2). Following Equation (9), the “1” would be 
replaced by the property value itself.

If only two data series are examined and block 
effects occur, it is not possible to decide which one 
of the data series should be given the block variable 
(see example in Ref. 20). Further knowledge may 
help one to decide.

Equation (9) should be applied with caution, and 
only if measurement trends are reasonable based on 
knowledge of the subject matter and if several other 
data series without a measurement trend including 
a high number of experiments exist. If Equation (9) 
is used for most experiments, the result would be a 
perfect fit with a trend coefficient of 1, even if all the 
experimental findings were seriously incorrect. A 
trend according to Equation (9) can be converted to 
an offset according to Equation (8) through logarith-
mic normalisation described in the previous section 
“Step 2: Calculation of property fixpoints and error 
normalisation”.

Step 4: Correlation analysis

When using multiple regression, it is always impor-
tant to evaluate possible factor correlations at the 
beginning. The linear correlation matrix is made up 
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Table 1. Example glass composition–property data for 
statistical analysis
 Compositions in %   Property
 A B C D E 
Laboratory 1 88  1  0 1 10 69·4 
 78  3  3 8  8 15·8
 73  5  7 9  6 18·6
 76  7  8 5  4 30·8
 88  9  0 3  0 25·7
Laboratory 2 75  2 10 4  9 71·1
 77  4  7 5  7 62·5
 84  6  1 4  5 53·3
 83  8  2 5  2 64·1
 74 10  9 7  0 93·4

Table 2. Analysis of block effects
Series Chemical Composition Offset Variable Property
Laboratory A … … … 1 P1
Laboratory A … … … 1 P2
Laboratory A … … … 1 P3
Laboratory A … … … 1 P4
Laboratory A … … … 1 P5
Laboratory B … … … 0 P6
Laboratory B … … … 0 P7
Laboratory B … … … 0 P8
Laboratory B … … … 0 P9
… … … … 0 …
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of the simple, or two way, correlation coefficients.  
They are denoted by the letter “r” and have a range 
of −1<r<+1 (Pearson’s “r”). The correlation coefficient 
for two factors (variables) is a measurement of the 
linear relationship between the two factors. If r is 
close to 1 then a plot of the two factors against one 
another would look like a straight line with positive 
slope. If r is close to −1 then the plot of the two fac-
tors against one another would look like a straight 
line with a negative slope.  If r is close to zero then 
a plot of the two factors would have no discernible 
linear trend.

For selecting the appropriate model variables, 
correlations between changes in the components’ 
concentrations and/or their interactions (concentra-
tion cross products) have to be considered if the data 
were not collected using a statistical design that is 
“orthogonal” (not correlated) for all of the factors 
of interest. If the absolute value of r is larger than 
approximately 0·5 to 0·6, then the influences of the 
two considered factors are “partially correlated” (i.e. 
linked but not completely aliased) and may be dif-
ficult to separate. If the absolute value of r is larger 
than approximately 0·8 to 0·9, then the influences 
are correlated so strongly that they are likely not to 
be separated in most cases, and one of three actions 
should be taken: (1) the factors should be combined, 
(2) one factor should be excluded, (3) additional 
experimental data should be used to lower the cor-
relation. The value of r can be calculated using 

r
xy x y n

x x n y y n
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where n is the number of experimental datapoints 
and x and y the variables that need to be tested for 
correlation.

A correlation is considered statistically significant 
if 
t r n ra .

/ /
/DF < -( )ÈÎ ˘̊ -( )2 11 2 2 1 2

where tα,DF is the t-distribution value depending on 
the confidence level α and the degrees of freedom 
DF with DF=n−2. Squared or cubic component 
influences are often strongly correlated to the cor-
responding linear influences. To follow the system of 
factor hierarchy (see below in this section), squared 
and cubic terms should only be considered after 
analysing simpler terms (linear effects and 2-factor 
interactions), and if the component concentrations 
vary widely.

If several data series with various glass composi-
tions need to be analysed, systematic differences 
between the chemical compositions of the series can 
be detected by analysing the correlation coefficients 
between block effect variables (Table 2) and glass 
components.

The correlation matrix of the compositions given 
in Table 1 is displayed in Table 3, where the main 
component A (usually silica) is excluded according 
to the slack variable approach explained above.

It can be concluded from Table 3 that the compo-
nents B and E are very strongly correlated in such a 
way that E usually decreases as B increases. There-
fore, it is difficult to decide if property changes may 
be caused by component B or E, and consequently 
either B or E should be excluded from the calculation, 
or both may be added to form a new variable. If B and 
E have a similar chemical nature, like Na2O and K2O 
or MgO and CaO, the terms should be added.

In most cases, it is sufficient to delete the variable 
from the model of the lower hierarchy (see below) 
or the variable that is less represented, i.e. the one 
that occurs less often at lower concentrations and 
with little concentration variation.* Therefore, in the 
example based on Table 1, the component E will be 
excluded from further calculations.

Even after excluding the glass component E, 
some weaker correlations remain in Table 3, e.g. 
r(C−D)=0·472. This and similar effects always need 
to be considered when model results are interpreted, 
such as when the components C and D are not 
completely statistically independent. Therefore, it is 
preferable to interpret model predictions rather than 
individual coefficients.

For models including high order terms, the factor 
hierarchy should be considered. This principle implies 
that higher order terms such as B.C.D or B2 may only 
be introduced if the significance (see below, section 
“Step 6: Calculation of the model standard error, the 
coefficient errors and significance”) of all the related 
lower order terms was evaluated first (e.g. B, C, D, 
B.C, B.D, C.D). Low order terms are always preferred 
over corresponding high order terms in cases where 
they are partially correlated and significant (see 
below). Statistical modelling techniques follow the 
principle of simplicity (also called principle of parsimony 
or Occam’s razor), a scientific approach that accepts as 
correct the simplest of several possible interpretations 
of a phenomenon.

The system of factor hierarchy is not strictly man-
datory, however, if it does not make sense according 
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* A glass component with low concentration variation is one that almost 
always is present at a constant concentration level (its concentration 
hardly changes regardless of all other glass components).

Table 3. Linear correlation matrix; “Offset L1” stands for 
the offset or dummy variable for data from Laboratory 1
 B C D E Offset L1
B  1    
C  0·014  1   
D  0·208  0·472  1  
E −0·991  0·050 −0·145 1 
Offset L1 −0·174 −0·298  0·044 0·148 1



Glass Technology: European Journal of Glass Science and Technology Part A Volume 50 Number 1 February 2009 �

to previous experience in the field it is possible 
in the glasses studied that a component shows a 
strong influence only in combination with another 
component, without influencing the property by 
itself significantly. For example, B2O3 does not have a 
strong effect on the viscosity in borosilicate glasses in 
the transition range, however, the B2O3.Na2O interac-
tion greatly increases the viscosity.(77)

Step 5: Determination of the model coefficients

After excluding the main component A (following 
the slack variable technique) and the component E 
(because of correlation) from Table 1, it is necessary 
to analyse the remaining data in Table 4.

The factor matrix X and the property matrix Y may 
be defined as seen in Table 5. If no intercept would 
be included, the first column would contain the main 
component A instead.

Given a linear regression model, the coefficient 
matrix co can be estimated using the ordinary least 
square (OLS) method according to Equation (12).(79) 
The symbol “T” stands for the matrix transpose 
operation, “−1” indicates matrix inversion, and the 
sign “.” means the scalar product. The term (XT.X)–1 
is the inverse information matrix. Multiplied by S2 (see 
Equation (13) below) it is called a variance–covariance 
matrix because it contains variable variances (square 
of standard deviations) of all the model variables as 
its diagonal elements (printed bold in Table 6), and 

covariances in all other matrix positions.

co=(XT.X)–1.XT.Y (12)

From the factor matrix X in Table 6, the inverse 
information matrix (XT.X)−1 should be determined 
first. Table 6 gives the inverse information matrix 
that is obtained in this case.

The coefficient matrix co, determined from X 
and Y can be seen in Table 6. Hence the preliminary 
model would be

Property=81·5743+0·3096B+1·7997C−4·9981D 
 −31·5514 Offset for data from Laboratory 1

Step 6: Calculation of the model standard 
error, the coefficient errors and significance

The model standard error S can be derived from the 
model residuals ∆ and the degrees of freedom DF. The 
model residuals are the differences between the 
experimentally observed and the calculated property 
values. Given the example in Table 1 and the model 
in Table 7, Table 8 displays the residuals. (This and 
the following tables contain more significant figures 
than necessary to supply an example that can be 
worked through and checked to see if exactly the 
same answers are obtained.)
The degrees of freedom DF is the difference between 
the number of independent experimental datapoints 
and the number of variables including the intercept. 
For the example in Table 1 the number of experi-
mental datapoints is 10, and the number of variables 
including the intercept is 5, i.e. DF=5. The model 
standard error S (also called “root mean square error”) 
can now be calculated using Equation (13)

S=[Σ(∆2)/DF]1/2 (13)

The model standard error S should be larger than 
the standard deviation of repeated measurements; 
otherwise, the model is “over fitted” (an unrealisti-
cally good fit is obtained). In addition, S should not 
be significantly larger (about 1·7 times) than the 
standard deviation of repeated experiments from 
several investigators (“under fitting”). An F-test can 
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Table 4. Example glass composition–property data for 
statistical analysis following the slack variable technique 
after correlation analysis
Compositions in %  Offset Property
B C D L1 
 1  0 1 1 69·4
 3  3 8 1 15·8
 5  7 9 1 18·6
 7  8 5 1 30·8
 9  0 3 1 25·7
 2 10 4 0 71·1
 4  7 5 0 62·5
 6  1 4 0 53·3
 8  2 5 0 64·1
10  9 7 0 93·4

Table 5. Example factor and property matrices
Factor matrix X    Property matrix Y
Intercept B C D Offset L1 
1  1  0 1 1 69·4
1  3  3 8 1 15·8
1  5  7 9 1 18·6
1  7  8 5 1 30·8
1  9  0 3 1 25·7
1  2 10 4 0 71·1
1  4  7 5 0 62·5
1  6  1 4 0 53·3
1  8  2 5 0 64·1
1 10  9 7 0 93·4

Table 6. Example inverse information matrix (XT.X)–1

 Intercept B C D Offset L1
Intercept  1·05733 −0·06684 −0·03086 −0·05546 −0·32364
B −0·06684  0·0135�  0·00224 −0·00552  0·01960
C −0·03086  0·00224  0·011�5 −0·00957  0·02891
D −0·05546 −0·00552 −0·00957  0·0���1 −0·03233
Offset L1 −0·32364  0·01960  0·02891 −0·03233  0·��9��

Table 7. Example model coefficients
Intercept  81·5743
βB   0·3096
βC   1·7997
βD  −4·9981
Offset L1 −31·5514
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be performed for quantitative evaluation of over/un-
der fitting.

The model standard error S derived from the 
residuals in Table 8 and with five degrees of freedom 
is 19·4453. Approximately 68% of all residuals fall 
within the limits of ±S. The standardised residual is the 
quotient of the residual and the model standard error 
(the first standardised residual in Table 8 is 1·2376; 
the second is –0·0291, etc...).

The standard errors of the coefficients Sβ are 
determined using

Sβ=SCjj
1/2=β/tβ (14)

where Cjj are the diagonal elements (marked in bold) 
of the inverse information matrix (XT.X)–1 in Table 6. 
The elements Cjj are given in Table 9. The t-value is the 
ratio of the coefficient and its standard error, as seen 
in Equation (14). Table 10 summarises all coefficients, 
including their errors and t-values.

The absolute value of the t-value (also called the 
t-statistic or t-ratio) is a measure of a coefficient being 
equal to zero. It is an indicator of the significance of a 
model factor (variable, component concentration or 
concentration product (interaction factor)) in slack 
variable models. In other words, it is a measure of 
how much information a factor adds to the model. In 
general, a t-value with an absolute value greater than 
or equal to two is considered to be significant, with 
a statistical confidence level of approximately 95%. 
(This confidence level at t=2 will change slightly with 
the degree of freedom, but it is at least 90% for DF>4.) 
Most minor components are insignificant, i.e. their 
influence is less than the standard error (“noise”). 
If the t-value of a glass component indicates that its 
coefficient is insignificant, it should be concluded 
that its influence on the property being modelled is 
insignificant within the studied composition range.

It must be noted that t-values may also be calcu-
lated and used for models that do not include an 
intercept following the canonical approach by Scheffé 

as seen in Equation (5). The t-values are a measure of 
a coefficient to equal zero in models with and without 
intercept. However, it is demonstrated in a paper 
by Piepel(80) that it is not a meaningful hypothesis 
to assume that a coefficient equals zero in models 
without intercept. An alternative component slope 
mixture model is presented in Ref. 80. For practical 
application it is advised in this work to always use 
t-values for evaluating the probability for a coefficient 
to equal zero for all model forms, with appropriate 
interpretation of the meaning of the t-values in mod-
els without intercept.

Another way of looking at a coefficient significance 
is possible through consideration of p-values. A p-
value reflects the probability of a coefficient being 
equal to zero, derived from the t-value and the degree 
of freedom, and is generally based on normal error 
distribution. The p-value should be lower than 0·05 
for a 95% confidence level.

A t-value reflects the significance of a coefficient 
within the model, but a special application might 
require a more strict limitation of the composition 
area than the model is valid for. The narrower the 
concentration range of a given component, the 
more and more a coefficient becomes practically 
insignificant.

It is obvious in Table 10 that the errors of the coef-
ficients βB, βC, βD are larger than their absolute values 
or of comparable size, and that the absolute values 
of their t-values are smaller than two. It is not pos-
sible with reasonable certainty to conclude whether 
the glass components B, C, and D have a significant 
influence within the examined composition range. 
Consequently, the glass components B, C, and D may 
be excluded from further calculations (Table 11). This 
exclusion must be performed stepwise because based 
on correlations it frequently happens that after exclu-
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Table 8. Example model residuals
Property
observed calculated residual
69·4 45·3345  24·0655
15·8 16·3663  −0·5663
18·6 19·1862  −0·5862
30·8 41·5975 −10·7975
25·7 37·8155 −12·1155
71·1 80·1982  −9·0982
62·5 70·4203  −7·9203
53·3 65·2396 −11·9396
64·1 62·6605   1·4395
93·4 65·8814  27·5186

Table 9. Example Cjj values from Table 6
Intercept 1·05733
βB 0·01358
βC 0·01125
βD 0·02881
Offset L1 0·48966

Table 10. Example model coefficients, coefficient standard 
errors, and t-values
Variable Coefficient Sβ tβ

Intercept  81·5743 19·9949  4·0798
βB   0·3096  2·2659  0·1367
βC   1·7997  2·0628  0·8725
βD  −4·9981  3·3008 −1·5142
Offset L1 −31·5514 13·6070 −2·3188

Table 11. Example factor matrix, after exclusion of the 
components B, C, and D
Intercept Offset L1
1 1
1 1
1 1
1 1
1 1
1 0
1 0
1 0
1 0
1 0
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sion of one insignificant variable another previously 
insignificant one becomes significant. In the example 
described here this is not the case.

The exclusion of components B, C, and D in the 
given example is called stepwise backward elimination, 
as initially all possible variables were included in 
the model, and the insignificant ones were excluded 
stepwise. The opposite approach would be stepwise 
forward selection, i.e. the most significant variable is 
included first in the model, followed by the next 
significant one, until no further significant variables 
can be found. During stepwise backward elimination 
and forward selection the factor hierarchy described 
above in the section “Step 4: Correlation analysis” 
should be taken into account.

For analysing large glass databases it is recom-
mended to proceed stepwise as follows: (1) selection 
of all significant single glass components through 
backward elimination; (2) selection of the most sig-
nificant and scientific reasonable two-component in-
teraction factors (boron anomaly, mixed alkali effect) 
through forward selection; (3) analysis of systematic 
offsets in whole data series from selected laboratories 
and if necessary exclusion of those series that are 
incomparable with the majority of all other series;(81,82) 
(4) stepwise deletion of outliers and simultaneous 
selection/elimination of variables according to their 
significance and scientific reason until no further 
outlier can be found.

Models that include insignificant variables are 
termed over fitted, and often are unrealistically well 
fitted.

Next, it is necessary to repeat the procedure, 
beginning with Step 5 (determination of the model 
coefficients). The size of the inverse information 
matrix decreases to 2×2 (Table 12).

Table 13 shows the new coefficients, coefficient 
standard errors, and t-values. The new model stand-
ard error S is 18·6893, which is insignificantly lower 
than the previous value of 19·4453. Table 14 gives the 
new model residuals.

Step 7: Outlier analysis, data leverage

From the residuals in Table 14, it can be concluded 
that some of them seem to stand out from others. It 
is possible that experimental or data entry problems 
caused a datapoint to show an anomalous response 
or that the composition is outside the range where 
the linear approximation of component effects is 
valid. The latter can be checked easily by comparing 

the compositions of the outliers to other glasses in 
two dimensions (see Figure 3), or through leverage 
analysis, described below in this section.

Regression analysis assumes that the residuals 
are normally distributed. Thus, a datapoint may be 
regarded as an outlier:(10)

(1) if the absolute of the residual is larger than about 
three times the model standard error (=absolute 
of standardised residual larger than about 
three),

(2) if the largest residual is higher than about 1·5 
times the next largest residual, or

(3) if the externally studentised* residual is higher than 
about three.

It is always possible to refer to the p-statistic (see 
above in the previous section, Step 6) to determine 
exact critical outlier limits using the desired confi-
dence level such as 99·7%. However, in most cases, 
the approximate limits stated here are sufficient.

Understanding of the outlier conditions (1) and 
(2) can be derived from the explanations above. To 
clarify the meaning of the outlier condition (3), more 
details must be given about data leverage in statistical 
analysis.

The h-value measures how much “leverage” a par-
ticular row of data could have on the resulting overall 
correlations.  It is also known as the Hat diagonal 
value, or diagonal value hi of the Hat-matrix H.  It is 
a measure of how good the experimental design is 
for all the variables in the model. In Figure 3 is a two-
dimensional example of a point with a high h-value. 
One glass composition with high h-value stands out 
from all other compositions. The Hat-matrix H and 
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Table 12. Example inverse information matrix (XT·X)−1, 
after exclusion of the component B, C, and D
 Intercept Offset L1
Intercept  0·� –0·2
Offset L1 –0·2  0·�

Table 13. Example model coefficients, coefficient standard 
errors, and t-values, after exclusion of the component B, 
C, and D
Variable Coefficient Sβ tβ

Intercept  68·8800  8·35811  8·2411
Offset L1 −36·8200 11·8202 −3·115

Table 14. Example model residuals, after exclusion of the 
component B, C, and D
Property
observed calculated residual
69·4 32·0600  37·3400
15·8 32·0600 −16·2600
18·6 32·0600 −13·4600
30·8 32·0600  −1·2600
25·7 32·0600  −6·3600
71·1 68·8800   2·2200
62·5 68·8800  −6·3800
53·3 68·8800 −15·5800
64·1 68·8800  −4·7800
93·4 68·8800  24·5200

* The expression "studentised" is not a typographic error; "studentised" 
is different from "standardised." The term is in honor of the English 
statistician William Sealey Gosset (1876–1937) who published under the 
pseudonym "Student."
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the h-value hi are defined by

H=X.(XT.X)-1XT

hi=xi
T.(XT.X)-1.xi (15)

Table 15 shows the example Hat-matrix determined 
from the factor matrix in Table 11. The h-values hi de-
rived from the factor matrix in Table 11, are marked in 
bold and underlined. In the example described here, 
all experiments have the same leverage by chance. 
Please note that the sum of all h-values is exactly two, 
the number of variables in the model, including the 
intercept. The rule-of-thumb is that a glass composi-
tion has a high amount of leverage when the h-value 
is higher than two times the quotient of the number 
of variables including the intercept, over the number 

of experimental datapoints.(83) In the example above, 
it would mean that experiments have a large leverage 
if h is higher than 2×2/10, i.e. 0·4.

It is not recommended that a glass composition be 
deleted solely on the basis of its h-value.

While the leverage of a glass composition on the overall 
correlations is quantified by its h-value, the leverage of 
one experiment on the model result (i.e. the coefficients) 
is measured with the Cook value, defined in Equation 
(16).(84,85) The Cook value compares the model result 
(coefficients) with and without each experiment. 
Generally, an experiment with a Cook value larger 
than one has a high leverage. One should make sure 
that an experiment with a high Cook value is ac-
curate, e.g. a NIST (National Institute for Standards 
and Technology) or DGG (German Society of Glass 
Technology) glass property standard; otherwise, 
the whole model might suffer from one single high 
leverage datapoint

Cooki
i i

i
=

-( )
D2

2 21
h

pS h
 (16)

where p is the number of model variables including 
the intercept (=2 in Table 13). Table 16 lists the Cook 
values of all experiments from the model in Tables 11 
to 14. The first experiment has a much higher Cook 
value (Cook=0·6237) than all others, but which is 
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Table 15. Example Hat-matrix H, derived from Table 11
 1 2 3 4 5 6 7 8 9 10
1 0·� 0·2 0·2 0·2 0·2 0 0 0 0  0
2 0·2 0·� 0·2 0·2 0·2 0 0 0 0  0
3 0·2 0·2 0·� 0·2 0·2 0 0 0 0  0
4 0·2 0·2 0·2 0·� 0·2 0 0 0 0  0
5 0·2 0·2 0·2 0·2 0·� 0 0 0 0  0
6 0 0 0 0 0 0·� 0·2 0·2 0·2  0·2
7 0 0 0 0 0 0·2 0·� 0·2 0·2  0·2
8 0 0 0 0 0 0·2 0·2 0·� 0·2  0·2
9 0 0 0 0 0 0·2 0·2 0·2 0·�  0·2
10 0 0 0 0 0 0·2 0·2 0·2 0·2  0·�

Figure 3. h-value demonstration

Table 16. Example model statistics, model from Table 13
Property  Residual h Cook Press Si ES
observed calculated ∆ value value residual  residual
69·4 32·0600  37·3400 0·2 0·6237  46·6750 13·2324  3·1549
15·8 32·0600 −16·2600 0·2 0·1183 −20·3250 18·7521 −0·9695
18·6 32·0600 −13·4600 0·2 0·0810 −16·8250 19·0956 −0·7881
30·8 32·0600  −1·2600 0·2 0·0007  p1·5750 19·8167 −0·0711
25·7 32·0600  −6·3600 0·2 0·0181  −7·9500 19·6629 −0·3616
71·1 68·8800   2·2200 0·2 0·0022   2·7750 19·8036  0·1253
62·5 68·8800  −6·3800 0·2 0·0182  −7·9750 19·6619 −0·3628
53·3 68·8800 −15·5800 0·2 0·1086 −19·4750 18·8421 −0·9245
64·1 68·8800  −4·7800 0·2 0·0102  p5·9750 19·7327 −0·2708
93·4 68·8800  24·5200 0·2 0·2690  30·6500 17·2919  1·5854
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smaller than one, i.e. it is still not significant. If the first 
experiment were removed from the discussed model 
example, the coefficients would change the most.

The Press residual is the quotient of the residual 
over (1−h), as given in Table 16. Press is the residual 
that would occur for a given experiment if that experi-
ment were not included in the regression analysis 
calculation, but rather if it were predicted by a model 
including all other experiments. Hence, an experi-
ment with high leverage on the model (Cook value) 
would have a high Press residual as well.

The h-value also makes it possible to determine 
the model standard error if one experiment were 
excluded (Si) using

Si={[(DF+1)S2−Δi
2/(1−hi)]/DF}1/2 (17)

 In Table 16, it becomes clear that if the first experi-
ment were excluded from the model, then the model 
standard error would decrease much more than for 
all other experiments. In the final step of the outlier 
analysis, the externally studentised residual (ES re-
sidual) may be derived from Si using

ES residual=Δi/[Si(1−hi)1/2] (18)

The ES residual is a more sensitive outlier indicator 
than the residual Δ alone, because the data leverage 
is considered. The analysis of the ES residuals makes 
consideration of the generally employed studentised 
residuals, which do not take into account Si from Equa-
tion (17) and which do not have a true t-distribution, 
obsolete. Table 16 displays all ES residuals from the 
model example above.

From the statistical indicators in Table 16, it can 
be concluded that the first experiment is probably an 
outlier. It should be evaluated in detail by an expert in 
the subject and excluded from the source database if 
deemed reasonable; the modelling procedure should 
then be started all over again, beginning with Step 
4 (correlation analysis). Table 17 shows the new 
correlation matrix, Table 18 shows the final model, 
and Table 19 shows further statistical indicators. No 
further outlier can be detected. In the final model 
the last experiment has a relatively high leverage 
(Cook=0·9230), which is still lower than one, i.e. it 
is still considered to have an insignificant leverage 
on the model. However, during model validation 
it should be evaluated if the experimental result is 
reliable.

In the given example it turns out that there exists a 
systematic difference between the data from Labora-
tory 1 and Laboratory 2. The calibration procedure 
for the new measurement method attempted in 
Laboratory 1, stated above in connection with Table 
1, must be re-evaluated.

Systematic errors in whole measurement series 
that lead to an offset are known in the glass science 
literature.(65,86)

Step 8: Goodness-of-fit evaluation, validation, 
model improvement
The goodness of a model fit (the measure of how 
well the glass properties can be described with the 
given glass compositions) is generally expressed in 
R2 values, defined by

R2=1−{Σ(Δ2)/Σ[(Observation−Average observation)2]} 
 (19)

R2, adjusted=RA
2=1−[(1-R2)(n-1)]/DF (20)

R2, predicted= 
RP

2=1−{(Press2)/Σ[(Observation−Average observation)2]} 
 (21)

R2, also known as coefficient of determination, is a gen-
eral goodness-of-fit indicator for models including 
an intercept (slack variable) that shows the fraction 
of the total variance in the dependent variable (glass 
property) that is explained by the model. If R2 is close 
to one, it either means that the model is good or that 
it could be the result of over fitting with insignificant 
and correlated variables.

R2 can be calculated and interpreted for the models 
described in this work with and without an intercept 
(Equation (5)).(87) However, the reader should be 
aware of the fact that in some model forms with 
a forced intercept R2 is not defined,(88,89) and some 
software packages calculate R2 incorrectly or do 
not permit its calculation at all. For glass property 
modelling described in this study R2 should only be 
determined using Equation (19).

RA
2, originally established for models without an 

intercept (Ref. 6, p 532), is adjusted for the degrees of 
freedom in multiple regression. If RA

2 is significantly 
lower than R2, it can be concluded that the model is 
over fitted. Therefore, RA

2 is often a better goodness-
of-fit indicator than R2 for multiple regression.

RP
2, also called R2

PRESS, is calculated in the same 
way as R2, but using the Press residuals instead of 
the residuals. RP

2 shows the expected fraction of the 
variance in the dependent variable (glass property) 
that can be explained by the model for predicting 
new experiments. If RP

2 is significantly lower than 
R2 and RA

2, it means that some experiments have a 
high leverage.

The model discussed above has relatively high R2 
values, with R2=0·9678, RA

2=0·9485, and RP
2=0·8743; 

i.e. the model fit appears to be good. RP
2 is somewhat 

lower than R2 and RA
2 because of the last high leverage 

datapoint. The last datapoint may be re-evaluated.
In glass property modelling using statistical analy-

sis the values of the R2 indicators are often higher 
than 0·9,(16–21,60,61,64,65) especially for properties that 
are relatively easy to measure such as the viscosity. 
For properties that are difficult to obtain, e.g. gas 
solubilities in glass melts, R2 tends to be lower.(20) In 

A. Fluegel StAtiSticAl regreSSion modelling oF glASS propertieS – A tutoriAl



1� Glass Technology: European Journal of Glass Science and Technology Part A Volume 50 Number 1 February 2009

general, R2 values higher than 0·8 may be considered 
as good.

A good model fit could be a sign of reproducible 
experiments; further hidden variables are unlikely 
to be discovered (correlations not considered). It is 
not clear yet, however, which one of the strongly 
correlated glass components B and E is causing the 
observed property changes. Add on experiments 
should be performed for decorrelating the glass 
components B and E. Table 17 also shows that some 
weaker correlations still remain, which always needs 
to be considered during interpretation of the model 
results. Some variables are not completely statistically 
independent. Therefore, it should be preferred to 
interpret model predictions rather than individual 
coefficients.

For model evaluation, the residuals should be 
plotted against the experimentally observed property 
values and against the calculated property values. 
Ideally, the result would be as shown in Figure 4, 
i.e. the residuals are normally distributed. However, 
if a residual variance trend occurs as displayed in 
Figure 2, logarithmic data transformation for error 
normalisation may be evaluated. If a plot is obtained 
as in Figure 5, the model may still not include an 
important variable.

The residuals also should be plotted against each 
variable. A pattern as seen in Figure 6 indicates that 
a squared term for the considered variable (glass 
component 1) should be introduced.

If stepwise residual trends occur, “block effects” 
may be present. Some data series may be different 

than others (different property values), or the errors 
within various data series may be different.

For statistical model validation, the differences 
between precision (repeatability), reproducibility, and 
accuracy must be taken into account. The precision 
reflects the consistency and repeatability within a 
data series of one experienced investigator, generally 
using one measurement technique. The reproduc-
ibility is a measure of how well other experienced 
investigators in other laboratories can reproduce 
the experiment. The accuracy shows the similarity 
to the “true” or “mean” value in case the absolute 
truth is known. It is often assumed that experiments 
reproduced by several experienced and independent 
investigators are very close to being accurate, e.g. 
NIST or DGG glass property standards.

Consequently, for models based on one single 
investigator, a reproducibility and accuracy can not 
be established; only the precision may be evaluated. 
However, in high quality publications that contain 
experimental data the author is always using external 
values for calibration and/or comparison. Therefore, 
even for some models based on one single study 
repeatability and accuracy can be established. For 
models based on several investigators, the reproduc-
ibility may be determined, which can be assumed to 
come close to accuracy if many investigators agree. 
Statistical model validation can be obtained by:
(1) Splitting of the source data into one set for model-

ling and a second set for comparing of predicted 
and experimental data;

(2) Comparing the model predictions to experimen-
tal data from another investigator;

(3) Comparative modelling of two data series from 
different investigators where coefficients and 
residual trends are compared with and without 
the second series;

(4) Comparative modelling of several data series 
from various investigators including careful 
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Table 17. New linear correlation matrix
 B C D E Offset L1
B 1     
C –0·269 1    
D –0·159 0·298 1   
E –0·990 0·321 0·210 1  
Offset L1 0·000 –0·183 0·328 –0·016 1

Figure 4. Normal residual distribution
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analysis of correlations, over/underfitting, sys-
tematic trends, and data leverage;

(5) Developing two independent models based on 
data series from different investigators in similar 
composition regions and comparing the model 
coefficients considering correlations, and

(6) Developing two independent models, including 
all possible component interactions based on data 
series from different investigators in different 
composition regions (compositions in mol%) and 
comparison of the model coefficients considering 
correlations.

If the standard errors are comparable to the errors 
found during model evaluation and correlations/
trends are considered, it can be assumed that the 
model is accurate, i.e. it is “validated.” Method (1) 
can be used for an internal validation of the model 
precision, and methods (2) to (6) allow conclusions 
to be drawn concerning total accuracy by comparing 
the results with other investigators.

In addition to standard error comparison, it is 

also possible to determine R2, validation= RV
2. RV

2 is 
calculated in the same way as R2 in Equation (19), but 
instead of the model residuals, the residuals from the 
validation test are used. For example, a model may 
be established based on 80% of all data, and then 
predictions are made for the remaining 20%, and only 
the residuals of the 20% of the data are considered 
for the RV

2 calculation.
An experimental model validation is superior to the 

statistical validation explained above. In addition, it 
is often possible with experimental model validation 
to improve the model considerably, resulting in a 
prediction error reduction up to 20 to 50% according 
to the experience of the author. Experimental valida-
tion and model improvement should be approached 
as follows:
(1) First, the reasonability of dataset-specific categor-

ical offset variables must be examined. It has to 
be investigated experimentally if and how find-
ings from different laboratories are comparable. 
The most contradictory findings from different 
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Figure 5. Residual trend

Figure 6. Residual trend versus a variable (glass component 1)
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laboratories should be reproduced.
(2) The glasses with the greatest influence on the 

overall understanding (high Cook values) need 
to be re-analysed and/or remelted and excluded 
from the model if crystallisation or phase separa-
tion occurs, if undissolved batch material remains 
in the glass, if the bubble content is very high, if 
extremely strong striations are visible, or if other 
similar irregularities can be observed.

(3) The model result (glass component influences 
on the property) should evaluated from a glass 
science standpoint. It must be estimated whether 
the model is reasonable and makes any scientific 
sense. Surprising or unusual glass component 
influences need to be traced back to the indi-
vidual glasses that are the most significant causes 
of these influences, and those glasses have to 
be remelted and measured. For example, if all 
glass components influence the property for up 
the 10 property units per mol%, and one minor 
component appears to influence the property 
for 5000 property units per mol%, then it is pos-
sible that this phenomenon is rather difficult to 
understand scientifically. The mentioned minor 
component with the exceptional influence should 
be analysed experimentally.

(4) Finally, add-on experiments can be performed to 
reduce mutual correlations of glass components, 
and to expand the model into new composition 
areas.

In general, a good multiple regression model has 
the following properties:(10)

· All factors in the model are significant (absolute 
value of t-values>2), and all excluded factors are 
insignificant (absolute value of t-values<2), i.e. 

there are no over/under fitting occurs.
· Accurate predictions can be made using the model. 

The standard error of the model S is not signifi-
cantly (no more than about 1·7 times) larger than 
the standard deviation of repeated experiments 
from several investigators.

· The standard error of the model S is higher than 
the standard deviation of repeated experiments 
from several investigators, i.e. the model is not 
over-fitted.*

· The coefficients are reasonable, according to the 
judgment of experts familiar with the modelled 
property.

· Follow-up experiments within the model applica-
tion limits agree with the model predictions.

Step 9: Model application

For all glass property models published in the litera-
ture, the compositional area is defined for which the 
model is valid. Those composition limits are stated as 
minima and maxima of all glass components consid-
ered in the specific model. However, in many cases, 
it may happen when two or more concentrations are 
set to extrema that those extreme combinations were 
not investigated in fact, even though the extreme 
single component influences were. Consequently, 
models may result in inaccurate predictions for 
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Figure 7. Binary 95% component combination limits; 95% of all data are within the limits of the ellipse. Please note that 
the limits are not characterised by a rectangle instead of the ellipse shown. The corners of a rectangle would be outside 
the source data, which is not considered in almost all glass property models

* It is often impossible to estimate the standard deviation of repeated 
experiments from several investigators because of the lack of data for 
multicomponent glasses. Therefore, it is advised to collect all published 
values available from binary glass systems.(78) A polynomial fit of the 
second or third degree often describes those data well. The standard error 
obtained from binary systems may be assumed to be similar to the error 
concerning multicomponent glasses.
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Table 18. Final example model coefficients, coefficient 
standard errors, t-values, and model standard error
Variable Coefficient Sβ tβ

Intercept  36·4174 7·3308   4·9678
βB   3·1107 0·8195   3·7960
βC   2·3791 0·6113   3·8915
Offset L1 −43·0622 4·1720 −10·3218
βD 0 insignificant
S=6·1053

certain component combinations if the combination 
(i.e. interaction) limits are not well defined.

The component combination limits for glass property 
models state the maxima and minima of all compo-
nent combinations that are covered by the model. The 
component combination limits need to be specified 
in addition to the concentration limits of all glass 
components.

Given the uncorrelated components 1 and 2 with 
normally distributed concentration values, the binary 
component combination limits may be expressed as 
seen in Figure 7 and defined using

U2=s2/s1[(tα.DFs1)2−(c1−a1)2]1/2+a2 (22)

L2=−s2/s1[tα.DFs1)2−(c1−a1)2]1/2+a2 (23)

where U2, L2 are the upper and lower concentration 
limits of component 2, s1, s2 are the standard de-
viations of all concentration values of components 
1 and 2, a1, a2 are the average concentrations of the 
components 1 and 2 and c1 is the concentration of 
component 1. Ternary component combination limits 
can be similarly derived from a spherical function like 
f(x,y)=(radius2−x2−y2)1/2.

If the components 1 and 2 in Equations (22) and (23) are 
linearly correlated the constant term a2 in the Equations 
(22) and (23) would need to be replaced by a linear function 
c2=slopec1+intercept.

Equations (22) and (23) can be applied in many 
cases for glass property modelling if the compo-
nent 1 is silica (SiO2), i.e. most binary component 
combination limits [(SiO2)–(other component)] 

can be quantified through Equations (22) and (23). 
However, it is not possible to use Equations (22) and 
(23) for component combination limits of most of the 
remaining glass components besides SiO2 because of 
a non-normal distribution of the data. For practical 
application, it is beneficial to define the component 
combination limits as follows:
(1) Maxima and minima of component concentra-

tion products (minima mostly zero)=interaction 
variables in Equation (7),

(2) Maxima and minima of component concentra-
tion sums (e.g. for excluding binary glasses like 
SiO2–CaO or ternary glasses like SiO2–B2O3–Al2O3 
from model predictions that are not part of the 
source data),

(3) Maxima of the terms (SiO2+Na2O).SiO2, 
(SiO2+K2O).SiO2, (SiO2+PbO).SiO2, and similar 
terms for excluding predictions in the binary 
systems SiO2–Na2O, SiO2–K2O, SiO2–PbO, etc. at 
high concentrations of SiO2.

In addition, model predictions should be con-
sidered unreliable if the 95% prediction confidence 
interval SCI given below in Equation (26) is higher 
than three times the model standard error S.

Model predictions can be made using Equations 

(1) or (7).
The standard prediction error of the mean for a glass 

composition of interest (PE, prediction error) can be 
determined using 

PE=S[x0
T(XTX)−1x0]1/2 (24)

with x0 being the factor 1-column matrix derived 
from the glass composition of interest, and x0

T be-
ing its 1-row transpose. PE is generally lower than 
S. For example, if the PE is determined for a glass 
from Laboratory 2 containing 3% B and 5% C, the 
matrix x0

T would be [1|3|5|0], and the prediction is 
57·6448±2·3579 (PE=2·3579). This means that there is 
a confidence of about 68% (tα,DF~1) that the average 
property of multiple glass samples with the desired 
composition would be as predicted with an error of 
±2·3579. PE is also a measure for the model sensibility 
limit, i.e. how large model prediction differences must 
be to represent a real difference, and below which 
any small differences may be considered as zero. 
With a model prediction difference of PE and tα,DF>3, 
there is a confidence of about 62% that the different 
predictions are equal; with a difference of about 
0·12×PE this confidence increases to 95%, and with a 
difference of about 3·9×PE the confidence decreases 
to 5%. It should be the goal to keep this confidence 
low. That means for slightly different model predic-
tions it is desirable to make sure that the predictions 
are not equal.

The standard confidence interval of the mean model 
prediction is obtained by multiplying the standard 
prediction error PE by the t distribution value tα,DF. 
For a 95% confidence and DF>15, tα,DF can be approxi-
mated as 2. DF=5 for the model described above.

Naturally, the standard error for predicting a single 
future experiment (PEF, prediction error for a single 
future experiment) is higher than the standard error 
for the predicting the mean response (PE). The PEF 
may be estimated using

PEF=(S2+PE2)1/2 (25)

Comparing PE and PEF demonstrates the fact that 
single experiments from one laboratory are less 
valuable than the modelled mean of a number of 
reproduced experiments for evaluating property 
values. 

The standard prediction confidence interval of the 
mean for multiple glass compositions or the simulta-
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neous confidence interval of the mean 

SCI=PE(pFα.p.DF)1/2 (26)

reflects the certainty that all of several predicted 
values are within the specified range with the desired 
confidence (S-method(90)). SCI should be preferred 
over PE in glass technology because it shows the con-
fidence related to mass production. The 95% SCI for a 
glass containing 3% B and 5% C following the model 
in Tables 18 and 19 is 57·6448±10·7454 (SCI=10·7454 
with F95%,4,5=5·1922). If the glass containing 3% B and 
5% C were mass produced, then 95 out of 100 glasses 
are predicted to have the desired property with an 
error of ±10·7454 because of model uncertainty.

The prediction errors PE, PEF, and SCI described 
above are valid only if the chemical glass composition 
is known exactly. However, the chemical composition 
within a glass melting tank may vary, and the accu-
racy of a chemical analysis of a sample from the glass 
tank may vary as well. For a good estimation of the 
predicted property error, the chemical composition 
variation within a glass melting tank must be quanti-
fied through chemical analysis. If the glass composi-
tion in the tank is systematically different in specific 
locations, those different compositions should be 
used for property prediction within those locations. 
In case the glass composition varies randomly, several 
measurements should be taken, and the standard de-
viation of each glass component, which is the result of 
random variations of the chemical composition in the 
tank and the analytical measurement error, should 
be calculated. The glass composition uncertainty can 
now be converted to a property prediction confidence 
interval due to chemical uncertainty (PCIC) using

PCIC=tα.DF(coT.Sc.co)1/2 (27)

with co being the 1-column coefficient matrix from 
Equation (12). The degrees of freedom DF in Equation 
(27) may be assumed to equal the number of samples 

used to determine the Sc (see below) minus one.
The chemical composition variance matrix Sc (S 

for σ2, C for chemical) in Equation (27) is defined in 
Table 20. It consists of a diagonal matrix that contains 
the square of the standard deviation σ2 (=variance) 
for each glass component included in the model 
as diagonal elements, and zero in all other matrix 
positions. In case the model included squared or 
interaction variables according to Equation (7), they 
need to be considered in the chemical composition 
variance matrix as well. If the main glass component 
silica (SiO2) were excluded following the slack-vari-
able technique in Equations (1) and (7) the matrix co 
should be recalculated according to the canonical 
model form in Equation (5) following equations listed 
by Piepel (Ref. 91, p 190) and Cornell (Ref. 6, p 15–18 
and 333–343).

The total prediction confidence interval CItotal 
caused by model uncertainty and the uncertainty of 
the chemical glass composition to be predicted is the 
sum of SCI and PCIC

CItotal=SCI+PCIC (28)

The technique described in this work can be suc-
cessfully applied for glass property modelling as 
demonstrated in previous papers.(20,64,77)

Analysis summary

The advantages of the presented statistical analysis 
method may be summarised as follows:
Superior accuracy: The large number of source data 

points allows a higher accuracy than the error 
arising from a few experiments.

Time and financial savings: Calculations can be 
completed within minutes. In contrast, one single 
experimental investigation may take several 
hours or days, including large personnel and 
equipment expenses, and the measurement ac-
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Table 19. Final example model statistics, model from Table 18
Property  Residual h Cook Press Si ES
observed calculated ∆ value value residual  residual
15·8 9·8244  5·9756 0·4678 0·3955  11·2277 5·5957  1·4638
18·6 25·5620 −6·9620 0·3123 0·2147 −10·1236 5·5348 −1·5168
30·8 34·1624 −3·3624 0·4166 0·0928  −5·7633 6·3917 −0·6887
25·7 21·3511  4·3489 0·5159 0·2792   8·9836 6·0759  1·0287
71·1 66·4295  4·6705 0·5416 0·3770  10·1882 5·9341  1·1625
62·5 65·5136 −3·0136 0·2689 0·0306  −4·1217 6·4997 −0·5422
53·3 57·4604 −4·1604 0·4310 0·1546  −7·3120 6·2166 −0·8872
64·1 66·0608 −1·9608 0·3610 0·0228  −3·0684 6·5975 −0·3718
93·4 88·9357  4·4643 0·6850 0·9�30  14·1736 5·6635  1·4045

Table 20. Chemical composition variance matrix (SC)
 Component 1 Component 2 Component 3 Component 4 Component 5
Component 1 σ1

� 0 0 0 0
Component 2 0 σ�

� 0 0 0
Component 3 0 0 σ3

� 0 0
Component 4 0 0 0 σ�

� 0
Component 5 0 0 0 0 σ5

�
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curacy still needs to be confirmed statistically 
afterwards by comparing results with those of 
other investigators.

Compatibility: Multiple regression makes data com-
parable over wide composition ranges, different 
measurement techniques, and from various 
investigators. Previous glass property models 
can be integrated (e.g. Lakatos et al; Hrma et al).(20) 
Without multiple regression, only data in binary 
glass systems are directly comparable.

Broad application range: The accuracy of new 
measurements mostly cannot be derived directly 
from similar results in the scientific literature or 
from NIST or DGG glass property standards. The 
multiple regression modelling approach may 
include several glass types with different chemi-
cal compositions; it makes them comparable. 
Consequently, the model allows predictions in 
composition areas that are not covered by com-
mon industrial models that are valid for only one 
specific glass type. The results of experiments 
inside and outside conventional ranges can be 
predicted and compared economically.

Future work

It is recommended that the demonstrated method be 
applied to all experimental values in the databases 
SciGlass(1) and Interglad(2) for “cleaning up” and 
organising the large volume of collected data, as in 
the work started by the author.(64,77) For example, up 
to now, such a well investigated glass property as the 
Littleton softening point in a simple binary system 
like SiO2–Na2O is not known exactly, as demonstrated 
through Table 21 and Figure 8. For other less inves-
tigated properties and multicomponent glasses, the 
uncertainties are more significant. It is necessary 
to quantify property values and the corresponding 
errors in detail.

The quality of the experimental data published 
by various authors should be evaluated based on 
statistical procedures described in this work and 
knowledge of the subject matter, including systematic 
offsets of whole series and the residual scattering 
compared with other investigators. A “quality rating” 
for publications, authors, or institutions would help 
to significantly improve the accuracy of property 
predictions.

In the future, systematic experiments should be 
performed to fill the numerous remaining “blank 
spots” of glass properties. For instance, little or noth-
ing is known about the influences of binary glass 
component interactions on properties besides very 
limited information in confined systems concerning 
mixed alkali effects, boron anomalies, or alumina 
interactions.

Some steps of the statistical analysis procedure can 
be automated; hence, it is possible to introduce them 
into the databases SciGlass(1) and Interglad(2) directly, 

Table 21. Littleton softening point in the binary system 
SiO2–Na2O for Na2O=30–35 mol%
Author Year c(Na2O) in mol% L.P. in °C
K. S. Evstropiev  1940 34·00 578·6
G. S. Meiling  1967 33·46 595·2
K. S. Evstropiev  1968 33·30 558·7
Shvaiko-Shvaiko 1968 30·00 606·8
Shvaiko-Shvaiko 1968 35·00 588·3
O. G. Ivanov  1969 30·00 600·2
O. V. Mazurin  1970 30·00 600·1
K. Matusita  1973 33·30 574·1
U. E. Schnaus  1976 33·00 600·8
W. H. Dumbaugh  1978 33·31 596·0
N. A. Ghoneim  1984 33·33 636·0
Y. Shiraishi  1987 33·00 597·0
R. Ota  1991 33·30 626·9
R. Ota  1995 33·33 613·9
M. Liska  1996 33·41 605·6
D. Ehrt  1997 33·00 592·5
D. B. Dingwell  1998 30·61 585·2
D. Ehrt 2001 33·00 587·1
Reference: SciGlass Database and Information System 4·0

Figure 8. Littleton softening point in the binary system SiO2– Na2O for Na2O=30–35 mol%
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especially for well investigated properties and within 
often examined glass composition ranges. It is not 
recommended to automate all steps described in this 
work; glass science and statistical expertise must be 
considered.

The analysis procedure presented in this study is 
a powerful and economic tool for data organisation 
and modelling, based on empirical and impartial 
phenomenology. However, the technique does not 
allow a detailed scientific understanding of all states 
and processes within glass, e.g. on the atomic scale. 
To obtain a better insight into the nature of glass, the 
simple linear and polynomial equations applied in 
this work may be replaced by equations with physi-
cal meaning such as those described in the nonlinear 
regression section above.

Conclusions

A statistical analysis method has been presented that 
enables the modelling of glass properties with high 
accuracy. It is possible for any user to perform all 
steps of the analysis in commonly available spread-
sheet software.

Statistical analysis allows measurement accuracy 
to be established through the combined modelling of 
a high number of original data from different sources. 
The modelled accuracy is often superior to a few 
test measurements within one laboratory because 
of the elimination of the influence of systematically 
different experimental conditions and/or systematic 
errors.

The detailed knowledge of glass property–compo-
sition relations makes targeted investigations possible 
with minimal time and financial investment.

The presented statistical analysis technique does 
not allow a detailed physical understanding of all 
states and processes within glass, e.g. on the atomic 
scale. Further work is necessary in this area.

For obtaining highly accurate glass property 
predictions it is recommended to systematically 
analyse all available glass databases, and to introduce 
a “quality rating” for publications.
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